Why Eccentric? (increase muscle, get stronger, look better) Why not?

By Benchmark Webmaster | on Nov 14, 2017

Why Eccentric? (increase muscle, get stronger, look better) Why not?

By Benchmark Webmaster | on Nov 14, 2017


Why we work eccentric training into our group training sessions here at Benchmark Canterbury.

1, 6 & 7 are my favourite reasons for eccentric training.

A workout that focuses on eccentric training is one of the single most productive ways to get stronger, add muscle, prevent injury, and even increase flexibility.

The eccentric phase of a lift occurs when a muscle contracts while lengthening. This is the down motion of the bench press, squat, deadlift or row.

  1. You are stronger eccentrically. You are stronger during the eccentric phase of any lift—as much as 1.75 times as strong as during the concentric phase! This is why you can lower more weight in the bench press or deadlift than you can raise. As such, to overload a muscle eccentrically you must use a longer eccentric contraction or use more weight than you can lift concentrically.

  2. The eccentric phase of every lift should be performed under control. For strength and mass gains, you never want to ignore the eccentric motion of an exercise and let the weight fall with gravity. Lower the weight in a controlled fashion and follow a prescribed tempo (a specific number of seconds to lower the weight).

  3. Eccentric-enhanced lifting creates greater hypertrophy than conventional training. By programming the eccentric motion of your exercises, you can achieve the greatest muscle growth by making certain you have the right intensity of load and the ideal time under tension to cause maximal muscle fiber damage. Studies suggest that protein synthesis is greatest after eccentric-enhanced lifting. For example, a simple way to pack on more muscle is to use a longer tempo for the eccentric motion (4 to 8 seconds) with an explosive or 1-second concentric motion.

In studies comparing eccentric-only and concentric-only training, eccentric-only is far superior for producing hypertrophy. This is because the eccentric motion damages the myofibers and it preferentially recruits fast-twitch fibers. This means there is a greater amount of stress per motor unit with eccentric exercises, producing greater muscle growth.

  1. Eccentric contractions use less energy than concentric contractions. An eccentric contraction requires less energy (or ATP) to complete than a concentric contraction. This is important because it means you can perform more work eccentrically, which has implications for body composition, strength, and size gains.

  2. Heavy negatives and force reps increase exercise intensity. The locking up and tearing of muscle fibers is not the only reason eccentric training is superior for hypertrophy. Heavy negatives and forced reps allow you to train at a higher intensity, thus producing greater stress and adaptation. These methods also trigger an anabolic response.

It’s all fairly technical, but it comes down to eccentric magic—you will get bigger if you train this way. For example, one study compared an 8-week power training program using 30 to 60 percent of the 1RM with a traditional strength program using 70 to 85 percent of the 1RM. The programs weren’t eccentric-enhanced, but they did include the eccentric and concentric action.

Results showed that the power training group had a much greater increase in type II muscle fibers than the traditional program. Researchers think this is because the fast eccentric motion of the power protocol activated gene signaling and greater protein synthesis, while recruiting distinct muscle fibers that aren’t used during slower movements.

  1. Eccentric-enhanced training strengthens tendons. Eccentric training is well known for strengthening tendons. Just like eccentric training is a robust stimulus for muscle growth, it also rebuilds tendon tissue. Eccentric training is commonly used to rehabilitate ruptured tendons, but including eccentric training in your program can help you prevent such a debilitating injury.

From an athletic standpoint, consider that tendons don’t act like steel cables, but rather as springs that contribute to the storage and release of energy. For a sprinter who needs to increase their stride length to run faster, they must use functions of the tendons to enable them apply more force into the ground.

  1. Eccentric training increases flexibility. Eccentric training has been shown to be one of the very best methods for increasing flexibility. It’s much more effective than static stretching, and a new analysis found that eccentrics can increase hip range-of-motion by an average of 22 percent. Range-of-motion in all joints measured was found to increase by at least 13 degrees.

Eccentric training works for increasing mobility because it causes muscle fiber growth, increasing the sarcomeres in series within a muscle, meaning the muscle becomes longer and you get more flexible! Just about everyone wants to be more flexible, and the more technical lifts require a large degree of flexibility to perform them correctly. If your deep squat, deadlift, power clean, or front squat technique suffer due to poor flexibility in the ankles, hips, shoulders, or wrists, you won’t be able to get the most out of your training—and you’ll look like you don’t know what you’re doing. Eccentric training is the solution.

Eccentric training is one of the most powerful tools you should have in your exercise toolbox. Learn how to use it properly to quickly achieve your goals, whether they are to improve athletic fitness or to transform your physique.

Posted on Nov 14, 2017